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Abstract – Harbor surveillance above and below the sea
surface depends on sensors such as surveillance radar and
multibeam sonar. These sensors attempt to detect and track
moderately observable targets such as small boats or hu-
man divers in environments which often are characterized by
heavy-tailed backgrounds. Target tracking in heavy-tailed
environments is challenging even for moderately strong tar-
gets due to the more frequent occurrences of target-like out-
liers. One strategy for increased robustness is to use the
backscattered signal strengths together with the kinematic
measurements in the tracking method. This paper proposes
two new amplitude likelihoods for target tracking in heavy-
tailed backgrounds. The first likelihood works by incor-
porating the uncertainty of the background estimate. The
second likelihood explicitly treats the background as heavy-
tailed using the K-distribution.

Keywords: Data association, Detection, Feature Aided
Tracking

1 Introduction
In harbor surveillance sensors such as radars and sonars are
used to detect and track various targets. The sensor pro-
vides an array of observations to be further analyzed through
signal processing and data analysis. After preprocessing,
such as matched filtering, a detector is employed to extract
point measurements from the array. This is done by setting a
threshold according to a Constant False Alarm Rate (CFAR)
criterium [9]. Then tracks are established and maintained
by feeding these extracted point measurements to a target
tracking method.

The targets we have in mind are small boats in radar data
or human divers in sonar data. Both can be expected to have
a Signal to Noise Ratio (SNR) somewhere between 0dB and
20dB. This means that if the target is to be detected with
a reasonably high probability one must allow some false
alarms to occur. In order to establish and maintain a track
on such a target one must determine which detections are
actually from the target, and which detections are to be con-
sidered as false alarms or clutter.

A popular solution to this problem of data association is
found in the Probabilistic Data Association Filter (PDAF)
and its multi-target version Joint Probabilistic Data Asso-
ciation Filter (JPDAF) [4]. One way to improve the per-
formance of the PDAF is the utilization of Amplitude In-
formation (AI). In [11] the PDAFAI (PDAF with Ampli-
tude Information) was therefore presented. While the PDAF
only uses kinematic measurements zk(i), the PDAFAI also
uses the corresponding amplitudes ak(i) in order to decide
which measurement is most likely to originate from the tar-
get. Of course the utilization of AI can be incorporated in
other tracking methods as well. Although AI-based tracking
methods have been around for some time, the usage of AI
does not appear to be commonplace in practical systems.

Figure 1 illustrates the difference between the conven-
tional PDAF and the PDAFAI. It is meant to highlight the
fact that the two methods primarily differ in the data associ-
ation part, and not in the state estimation part. Both meth-
ods calculate a conditional state estimate x̂k|k(i) for each
measurement based on purely kinematic information. The
PDAF solely depends on this kinematic information in the
process of lumping these conditional state estimates together
to the final a posteriori state estimate x̂k|k. The PDAFAI
uses the amplitudes of the measurements as well in this pro-
cess. Since the PDAFAI has access to more information than
the PDAF, it can be expected to outperform the PDAF, as
long as the background and target amplitude statistics are
adequately modeled.

Most work on AI assumes that the background is Gaus-
sian or Rayleigh distributed [11,14] with a known power.
Such assumptions may or may not be adequate in the real
world. Experimental evidence [1] has indicated that more
heavy-tailed background models should be considered. In
particular, theK-distribution [15] is popular in the radar and
sonar communities.

Many papers have been published on detectors in heavy-
tailed clutter, see for example [3] or [8]. However, such pa-
pers make no mention of target tracking. This is problem-
atic, as a detection system in heavy-tailed noise may need to
operate at high false alarm rates (≈ 10−2). The decision as

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 2153



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2009 2. REPORT TYPE 

3. DATES COVERED 
  06-07-2009 to 09-07-2009  

4. TITLE AND SUBTITLE 
Target Tracking in Heavy-Tailed Clutter Using Amplitude Information 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University Graduate center,Kjeller, Norway, , , 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002299. Presented at the International Conference on Information Fusion (12th) (Fusion
2009). Held in Seattle, Washington, on 6-9 July 2009. U.S. Government or Federal Rights License. 

14. ABSTRACT 
Harbor surveillance above and below the sea surface depends on sensors such as surveillance radar and
multibeam sonar. These sensors attempt to detect and track moderately observable targets such as small
boats or human divers in environments which often are characterized by heavy-tailed backgrounds. Target
tracking in heavy-tailed environments is challenging even for moderately strong targets due to the more
frequent occurrences of target-like outliers. One strategy for increased robustness is to use the
backscattered signal strengths together with the kinematic measurements in the tracking method. This
paper proposes two new amplitude likelihoods for target tracking in heavytailed backgrounds. The first
likelihood works by incorporating the uncertainty of the background estimate. The second likelihood
explicitly treats the background as heavytailed using the K-distribution. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

Public Release 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Detection Tracking

Raw
data

Estimate
background Set threshold Measurement

extraction
Measurement

update Lumping Tracks

Data
association Prediction

Amplitude data ak(i) etc.

zk(i)

βk(i)

x̂k|k−1, Pk|k−1

x̂k|k(i)
Pk|k(i)

Figure 1: Schematic description of the PDAF and PDAFAI methods. The dashed connection represents the flow of ampli-
tude information from detector to tracker, which only is present in the PDAFAI.

to whether the target is present or not can obviously not be
made based on the detection process alone.

One way to overcome this challenge is to integrate the
data before the detection decision is made, as done in so-
called Track-Before-Detect (TBD) [5,14]. For very low
SNR, when the target return cannot be expected to exceed
any reasonable threshold, this is the only feasible approach
to target tracking. Otherwise TBD is not worthwhile the
very large computational expenses.

In [5] it was observed that effects similar to the well
known phenomena of CFAR loss [9] could deteriorate the
performance of TBD methods. Since TBD only relies on
amplitude information, it is more sensitive to the interpre-
tation of the background than conventional tracking meth-
ods. To prevent the method from being misled by misin-
terpretation of the background it was necessary to make its
amplitude likelihood more conservative. This was done by
marginalizing over the true, but unknown, noise parameter.

This paper presents further work on conservative ampli-
tude likelihoods. While [5] focused on TBD methods, this
paper focuses on more traditional PDAF and PDAFAI meth-
ods. Analogous to what was done in [5] we first develop
a proper treatment of uncertain, but Rayleigh distributed,
background noise. Then we establish the treatment of am-
plitude information in the more challenging case of heavy-
tailed clutter.

The paper is organized as follows: Section 2 presents the
framework in which our tracking methods are developed. In
Section 3 we describe the tracking methods, with particu-
lar attention to the amplitude likelihoods. We also describe
the detection process preceding target tracking, and how the
various quantities involved are estimated. A conclusion is
given in Section 4. Details regarding the numerical evalua-
tion of the amplitude likelihoods are left for the Appendix.
Simulation results are published in a separate paper [6].

2 Conceptual framework
In this paper we restrict attention to the single-target track-
ing problem. Although the real world most often poses
problems that are suitably viewed as multiple target prob-
lems, the single-target problem must be properly understood
before one can move onto multiple target problems. The
utilization of AI is one such challenge where significant
progress can and should be made in the single-target case.

The single-target tracking problem can be phrased in
terms of the optimal Bayes equations,

p(xk|Zk−1) =
∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1,

p(xk|Zk) ∝ p(Zk|xk)p(xk|Zk−1). (1)

Our objective is to evaluate the posterior Probability Density
Function (PDF) p(xk|Zk) from the set of received measure-
ments Zk = {Z1, . . . ,Zk} where each Zk contains mk

measurement vectors: Zk = {ζk(i)}mk
i=1. This is done using

models for the likelihood p(Zk|xk) and the transition prior
p(xk|xk−1).

2.1 Kinematics
The kinematic state xk will typically contain position and
velocity, and possibly accelerations, heading, maneuver
strengths etc. For easy of presentation we assume a linear
kinematic transition prior,

xk = Fxk−1 + vk, vk ∼ N (0,Q). (2)

The tracking literature provides no established model for the
development of the mean target power dk through time. As
the fluctuations of signal strength from scan to scan can be
very severe, such fluctuations should be accounted for in the
measurement model and not in the process model. It is very
difficult to estimate a time-varying target power accurately
for fluctuating targets [14]. It makes more sense to talk about
the target power as something being constant over several
(say ≥ 20) data frames. Therefore we treat the target power
state as a constant parameter and write dk = dk−1 = d.

2.2 Measurement model
We parameterize the measurement vector into a kinematic
part zk(i), an amplitude part ak(i) and a background part
qk(i) so that

ζk(i) = [zTk (i), ak(i), qTk (i)]T . (3)

In order to make the estimation problem well-posed we as-
sume that at most one measurement ζk(i) can originate from
the target. All the other measurements are thus considered
as false alarms. We also assume that the mapping x → z
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is linear, for example through application of the coordinate
transform described in [4],

zk = Hxk +wk, wk ∼ N (0,R). (4)

The amplitudes ak(i) are under the hypotheses of noise or a
target embedded in noise assumed to be distributed accord-
ing to likelihoods p0(ak(i) | qk(i)) or p1(ak(i) | dk, qk(i))
respectively. These will be thoroughly discussed in Sections
3.6 and 3.7.

2.3 The CLT and the Rayleigh model
The background model most often encountered in the track-
ing literature is the Rayleigh distribution, which is valid un-
der the Central Limit Theorem (CLT). The backscattered
signal zik in resolution cell i has under the CLT a complex
Gaussian distribution. The envelope or amplitude a is then
Rayleigh distributed,

a = |z| ∼ Ra(a ; η) ,
a

η
exp

(
−(a)2

2η

)
(5)

where η is the power of the background.

2.4 The K-distribution
The CLT is valid under the assumption of a large and non-
random number of independent scatterers [13]. In reality the
number of significant scatterers per resolution cell may not
be high enough for the CLT to hold. One often observes a
more heavy-tailed background than expected according to
the CLT. The possibly most popular model for such non-
Rayleigh clutter is the K-distribution [15]. A K-distributed
amplitude a has the PDF

KPDF (a ; ν, b) ,
4aν

√
b
ν+1

Γ(ν)
Kν−1

(
2a√
b

)
. (6)

For ν → ∞ the K-distribution turns into the Rayleigh dis-
tribution, while ν < 1 indicates a very heavy-tailed back-
ground. By Γ(·) we denote the Gamma function while
Kν(·) refers to the modified Bessel function of the second
kind [10].

The K-distribution is popular for two reasons: Physical
plausibility and mathematical convenience. The first reason
has to do with the fact that reasoning similar to the CLT
leads to the K-distribution [2,15].

In contrast to so-called stable distributions, the K-
distribution has finite moments,

mn = E [an] =
√
b
nΓ
(
1 + n

2

)
Γ
(
ν + n

2

)
Γ(ν)

.

It is also convenient that the K-distribution can be viewed
as a Rayleigh distribution Ra(a ; η) modulated by a Gamma
distribution Ga(η ; ν, b/2). In mathematical terms,

p(η ; ν, b) = Ga(η ; ν, b/2) ,
ην−1exp

(
− 2η

b

)
(b/2)ν Γ(ν)

,

p(a|η) = Ra(a ; η),
⇒ p(a ; ν, b) = KPDF (a ; ν, b) . (7)

This has motivated researchers to introduce the compound
K-model [15], in which radar sea clutter is modeled by
treating η as a correlated “texture” component, while a|η is
an uncorrelated “speckle” component. We let η refer to both
the deterministic Rayleigh parameter in (5) and to the tex-
ture random variable in (7). The context will make it clear
how η is supposed to be interpreted.

2.5 Model for target plus clutter
The compound interpretation of theK-distribution allows us
to evaluate the PDF of a Swerling I target in K-distributed
clutter as follows. Conditioned on the texture η, the back-
ground “noise” w has a complex zero-mean Gaussian PDF,

p(w|η) = Nc(η) , N
([

Re(w)
Im(w)

]
;
[

0
0

]
,

[
η 0
0 η

])
.

The complex backscatter signal s from a Swerling I target
with power d also is Gaussian,

p(s|d) = Nc(d).

Therefore the sum z = s+w of signal and noise conditioned
on η is Gaussian as well, and the corresponding amplitude
a = |z| is Rayleigh,

p(z|d, η) = Nc(d+ η)⇒ p(a|d, η) = Ra(d+ η).

Under the compound K-model the texture η is random, so
the PDF of the amplitude must be found by marginalizing
over η,

p(a|d, ν, b) =
∫ ∞

0

Ga
(
η; ν,

b

2

)
Ra(a; d+ η)dη

=
a

bνΓ(ν)

∫ ∞
0

ην−1

η + d
exp

(
−η
b
− a2

2(η + d)

)
dη. (8)

3 Methodology
Most tracking systems employ a modularized architecture
in which a detector extracts measurements to be fed to the
data association and state estimation methods. This does
not necessarily have to be the case, as exemplified by TBD
methods which do not carry out any measurement extraction
at all. Although our work is relevant for such methods as
well [5], we are in this paper content with the modularized
architecture as represented by the PDAF and the PDAFAI
methods.

3.1 Extraction for Rayleigh case
For any cell i a detection is declared if its amplitude exceeds
a certain threshold T iRk. The detection threshold T iRk is de-
termined from a set of M auxiliary cells GiR according to
the closed form formulas

η̂ik =
1

2M

∑
j∈Gi

R

(ajk)2 (9)

T iRk =

√√√√2M

((
1
PFA

) 1
M

− 1

)
· η̂ik. (10)
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Here η̂ik is the Maximum Likelihood Estimator (MLE) of
the background strength. The detector given by (9) and (10)
gives an actual false alarm equal to the design false alarm
rate PFA as long as the background is Rayleigh. It is there-
fore referred to as a CFAR (Constant False Alarm Rate) de-
tector [9].

The set of auxiliary cells is chosen to lie in the vicinity
of the cell under test, although with guardbands to prevent
them from being affected by signal leakage.

Each extracted measurement vector contains the location
of the detected cell, as well as the value of the cell and the
clutter estimate from its auxiliary cells. As discussed in Sec-
tion 2.2, range and bearing can be converted to cartesian co-
ordinates using simple formulas [4]. The full measurement
vector of (3) is under the assumption of a Rayleigh back-
ground parameterized as

ζ(i) = [zT (i), a(i), η̂(i)]T .

Here z(i) = [x̃(i), ỹ(i)]T is the centroid of resolution cell
number i in the cartesian coordinate system, which may or
may not be related to the target through a model such as (4).

3.2 Extraction for K-case
If the background is significantly heavy-tailed, the detector
given by (10) becomes increasingly inadequate. Instead of
attempting to estimate the local background power η, we
will estimate the K-distribution parameters ν and b from a
somewhat larger set of N auxiliary cells, and then set the
threshold according to the design false alarm rate for a K-
distribution with these parameters. A Method of Moments
(MoM) estimator recommended by [2] uses the first and the
second moments of the data given by

mi
1 =

1
N

∑
j∈Gi

K

ajk and mi
2 =

1
N

∑
j∈Gi

K

(ajk)2.

This estimator attempts to solve the equation

m2

m2
1

=
4νΓ2(ν)

Γ
(
ν + 1

2

) . (11)

Since no closed form solution can be found the equation
must be solved numerically. As explained in [2] a second-
order approximation can be found as

ν̂ =
1
4

[
log
(
πm2

4m2
1

)]−1

. (12)

While [2] recommends (12) as a starting point for the nu-
merical search, we simply use (12) as our estimator of ν.
Figure 2 shows that for very heavy-tailed clutter (ν ≈ 0.1)
the estimator (12) has a significant bias, and the numerical
search is necessary in order to obtain an unbiased estimator.
But for moderately heavy-tailed clutter (ν ≥ 0.5) the nu-
merical search appears to be overkill. Having estimated ν,
we estimate b as

b̂ = m2/ν̂. (13)

We can now for any resolution cell i determine a threshold
T iK according to the criterium

P (a > TK) ≈ 1− 2aν
√
b
ν
Γ(ν)

Kν

(
2TK√
b

)
= PFA. (14)

This is a nonlinear equation in TK which must be solved
numerically. Instead of working directly with the cumulative
distribution function as in (14), we recommend using the
square of its logarithm for numerical stability.

A test using the threshold TK is carried out in order to
decide whether cell i should be stored among the detected
measurements. When a K-distributed background is as-
sumed we must store two background estimates for each
measurement vector. In addition it is convenient to store
the detection threshold TK(i):

ζ(i) =[zT (i), a(i), ν̂(i), b̂(i), TK(i)]T

,[zT (i), a(i), q(i)]T .

3.3 Probabilistic Data Association
The PDAF [4] is perhaps today’s most popular tracking al-
gorithm due to its pragmatic compromise between efficiency
and robustness. It is a suboptimal algorithm which at each
time step collapses the target state posterior PDF into a sin-
gle Gaussian which then is propagated to the next time step.
Thus the past information about the target at time step k can
be summarized by

p(xk|Zk−1) ≈ N (xk ; x̂k|k−1,Pk|k−1). (15)

The lumping (cf. Figure 1) implied by (15) is done by ex-
pressing the state estimate at time k as a weighted average
of the prediction x̂k|k−1 and state estimates conditioned on
the latest measurements zk(i). This leads to the following
Kalman Filter-like equations for prediction and measure-
ment update of the state estimate x̂k|k and its associated
covariance Pk|k:

x̂k|k−1 = F x̂k−1|k−1, (16)

Pk|k−1 = FPk−1|k−1F
T +Q

x̂k|k = x̂k|k−1 +Kk

mk∑
i=1

βk(i)νk(i)

Pk|k = Pk|k−1 − (1− βk(0))KkSk|k−1K
T
k + P̃k

where

Kk = Pk|k−1H
TS−1

k|k−1

Sk|k−1 = HPk|k−1H
T +Rk

νk(i) = zk(i)−Hx̂k|k−1 = zk(i)− ẑk|k−1

P̃k = Kk

[
mk∑
i=1

βk(i)νk(i)νk(i)T − νkνTk

]
KT
k

νk =
mk∑
i=1

βk(i)νk(i).
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Figure 2: Histograms illustrating the distributions of ν̂ when the true shape parameter is 0.1 or 1.

The index i ranges over all mk extracted and validated mea-
surements inside a validation gate around ẑk|k−1. The vali-
dation gate is defined by the criterium(

zk(i)− ẑk|k−1

)T
S−1
k

(
zk(i)− ẑk|k−1

)
< g2,

where the gate threshold g typically has a value in the inter-
val between 3 and 10.

Derivations of the association weights βk(i) can be found
in [4]. In the conventional case without AI they are written

βk(i) =


e(i)

b+
∑mk

j=1 e(j)
i = 1, . . . ,mk

b
b+
∑mk

j=1 e(j)
i = 0

, (17)

where

e(i) = e−(zk(i)−ẑk|k−1)T
S−1

k (zk(i)−ẑk|k−1)/2.

The value of b depends on the model for the false alarm point
process. The parametric version of the PDAF assumes that
the number of false alarms has a Poisson distribution with
parameter λV , where V is the volume of the validation gate
and λ is the spatial clutter density. It can then be shown
that [4]

b = (2π/g)
nz
2 λV (1− PDPG)/(cnz

PD).

For the more robust non-parametric version of the PDAF we
replace λV by mk, thereby yielding

b = (2π/g)
nz
2 mk(1− PDPG)/(cnz

PD).

3.4 PDAF with Amplitude Information
In [11] it was suggested to improve the performance of the
PDAF algorithm by using the amplitude of the measure-
ments as part of the tracking algorithm. The amplitude in-
formation only affects the association weights and not the

state estimation itself, as illustrated in Figure 1. The modi-
fied association weights are given by

e(i) = e−(zk(i)−ẑk|k−1)T
S−1

k (zk(i)−ẑk|k−1)/2

· [p1(ak(i)|d̂k, q̂k(i)) /PD] / [p0(ak(i)|q̂k(i)) /PFA]

, e−(zk(i)−ẑk|k−1)T
S−1

k (zk(i)−ẑk|k−1)/2

· l(ak(i)|d̂k, q̂k(i)),

where the amplitude likelihood ratio l(ak(i)|d̂k, q̂k(i)) de-
pends on the observed amplitude ak(i), the target power es-
timate d̂k and a description of the background which is con-
tained in q̂k(i).

The likelihoods p0(. . .) and p1(. . .) are the PDF’s of the
amplitude under the two hypotheses of only clutter and of
clutter plus a target with power d̂k. Their exact expressions
depend on how the background is modeled. Notice that
p0(. . .) and p1(. . .) are divided by PFA and PD respectively
in order to compensate for the fact that ak(i) has exceeded
the detection threshold.

3.5 The target power
Under the Rayleigh assumption an MoM estimator d̂k of the
mean target power d at time step k can be written

d̂k = max
(
Ck
Dk

,
Bk − Ck
Dk

)
(18)

where

Bk =
1

2L

(
L∑
l=1

1
mk−l+1

mk−l+1∑
i=1

a2
k−l+1(i)βk−l+1(i)

)

Ck =
1
L

(
L∑
l=1

1
mk−l+1

mk−l+1∑
i=1

η̂k−l+1(i)βk−l+1(i)

)

Dk =
1
L

L∑
l=1

(1− βk−l+1(0)).
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This estimator, which is developed in [7], is also used
to estimate the target power when the background is K-
distributed. Then η̂k−l+1(i) is found as half the second mo-
ment, or equivalently

η̂k−l+1(i) =
ν̂k−l+1(i)b̂k−l+1(i)

2
. (19)

The time lag L is a tuning constant whose optimal value
hardly can be determined rigorously. It would need to be
rather large in order to provide an accurate estimate of d. On
the other hand, permanent changes in the target amplitude
may in practice occur quite abruptly. As a compromise we
have found L = 20 to be a reasonable value. When the track
is younger than L time steps (i.e. k < L) we necessarily use
a shorter lag.

The amplitude estimate plays a fundamental role in the
likelihood ratio introduced in Section 3.4. It is also useful
in order to determine the expected probability of detection
PD. For the case of a Swerling I target in Rayleigh clutter
we find the detection probability as

PD =
(

1 +
(
P
−1/M
FA − 1

) η

d+ η

)−M
.

When the clutter isK-distributed we find the detection prob-
ability by reasoning analogous to (8) as

PD =
(2/b)ν

Γ(ν)

∫ ∞
0

ην−1exp
(
−2
b
η − T 2

K

2(η + d)

)
dη (20)

where TK is the detection threshold as obtained from (14).
How to evaluate (20) efficiently is explained in the Ap-
pendix.

3.6 Likelihoods for Rayleigh case
Under the Rayleigh-Swerling I assumption used in [11] the
likelihoods of Section 3.4 become

p0(a|η) =
a

η
exp

(
−a2

2η

)
p1(a|d, η) =

a

(η + d)
exp

(
−a2

2(η + d)

)
⇒ l(a|d, η) =

PFA

PD
· η

η + d
· exp

(
a2d

2η(η + d)

)
. (21)

The formula (21) is optimal given that the true values of d
and η are known. Clearly (21) is not optimal if the Rayleigh
assumption is inadequate, but it may still be used as a heuris-
tic. Several papers starting with [11] have demonstrated the
gain from (21) under ideal circumstances. The performance
of (21) under less ideal circumstances has on the other hand
not received much attention in the tracking literature.

In this section we suggest one possible strategy of cop-
ing with the inevitable uncertainty of η without introducing
the K-distribution. This strategy is to account for the uncer-
tainty of η in a way analogous to what is done in the CFAR

threshold (10). In the context of TBD this has been shown
to have a crucial impact on performance [5].

The estimator η̂ given by (9) is a random variable with a
corresponding PDF that should be accounted for in the like-
lihood evaluation. Its PDF p(η̂|η) depends on the true noise
parameter η. To utilize the information carried in this PDF
requires us to treat η as random as well and assign it a prior
distribution p(η). By marginalizing the joint distribution of
a and η given η̂ we obtain

p(a|d, η̂) ∝
∫
p(a|d, η)p(η̂|η)p(η)dη. (22)

The background estimate η̂ given by (9) is under the as-
sumption of independent Rayleigh samples known to follow
a Gamma distribution,

p(η̂|η) = Ga
(
M,

η

M

)
=
η̂M−1exp

(
− η̂Mη

)
(
η
M

)M Γ(M)
.

Since we do not have any more prior information than the
value of η̂ itself we use a flat and thus non-informative prior
in the Rayleigh case:

p(η) = Uniform(η; [0, ξ]). (23)

Here ξ is a very large number. The flat prior allows us to use
p(η̂|η) without being bothered by p(η). The likelihood ratio
becomes

l(a|d, η̂) =
PFA

PD
· p(a|d, η̂)
p(a|0, η̂)

(24)

=
PFA

PD

∫ ξ
0

Ra (a ; η + d) Ga
(
η̂ ; M, ηM

)
dη∫ ξ

0
Ra (a ; η) Ga

(
η̂ ; M, ηM

)
dη

.

For ξ →∞ we obtain

l(a|d,η̂) =
PFA

PD
· Γ(M)[
η̂M + a2

2

]M (25)

·
∫ ∞

0

1
(η)M (η + d)

exp
(
− η̂M

η
− a2

2(η + d)

)
dη.

The Appendix explains how this expression can be evaluated
in an efficient way.

3.7 Likelihood for K-case
Significant heavy-tailedness is under the compound K-
model (7) treated by assigning a Gamma prior distribution
to η. The uncertainty imposed on η this way is likely to
be more severe than the uncertainty induced by the CFAR
background estimate (9). Therefore it is not of primary im-
portance to account for estimation uncertainty in the proper
treatment of K-distributed clutter. Rather we simply eval-
uate p1(a|d, ν, b) and p0(a|ν, b) under the compound K-
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Figure 3: Various likelihoods for SNR = 15dB.

model (7) as done in (8). This yields

p0(a) =
4aν

√
b
ν+1

Γ(ν)
Kν−1

(
2a√
b

)
,

p1(a) =
a

bνΓ(ν)

∫ ∞
0

ην−1

η + d
exp

(
−η
b
− a2

2(η + d)

)
dη,

⇒ l(a) =
PFA

PD
· (a

√
b)1−ν

4Kν−1

(
2a√
b

)
·
∫ ∞

0

ην−1

η + d
exp

(
−η
b
− a2

2(η + d)

)
dη. (26)

The integral in (26) must be solved numerically, as outlined
in the Appendix.

Figure 3 shows the log likelihood ratios ln l(a| . . .) corre-
sponding to (21), (25) and (26) for various shape parameters
ν. Assuming that our estimate of the target power d cor-
responds to a target with SNR = 15dB, the curves show
the log likelihood ratios as functions of the actual amplitude
value. Heavy-tailed noise is seen to lead to a more conser-
vative likelihood. For really spiky clutter (ν ≈ 0.1) the log
likelihood ratio curve corresponding to (26) hardly exceeds
zero. This tells us that tracking a 15dB target in such noise
most likely is futile. For ν = 8 the behavior of (26) is not
very different from (21), which means that the Rayleigh ap-
proximation may be considered adequate. The behavior of
(25) is on the other hand always qualitatively different from
(21). It saturates and even falls back for very large a.

4 Conclusion
In this paper the classical PDAF method has been tailored to
cope with heavy-tailed clutter. In particular we have devel-
oped conservative likelihoods which evaluate amplitude in-
formation in a robust way. The actual performance of these
developments is investigated in [6].

Appendix: Likelihood evaluations
The tracking methods developed in this paper rely on eval-
uations of the integrals in (20), (25) and (26). Although no
closed-form solutions exist to any of these integrals, they
can be evaluated quite fast within a reasonable accuracy.
How this can be done is explained in this appendix.

According to [12], the integral in (26) is “readily inte-
grated numerically”. However, the integrand has several un-
desirable properties which must be addressed. On the one
hand it may tend quickly towards∞ as η → 0, while on the
other hand it may tend very slowly towards 0 as η → ∞.
Its overall shape is difficult to characterize in simple formu-
las. The popular strategy of importance sampling is likely to
fail since the obvious factorization may lead to factors with
effectively disjunct supports.

To overcome these challenges we use the substitution

η =
1
u2
⇒ dη = − 2

u3
du, (27)

and express the likelihood ratio as

l(a|d, ν, b) =
PFA

PD
· (a

√
b)1−ν

2Kν−1

(
2a√
b

) (28)

·
∫ ∞

0

u1−2ν

1 + u2d
exp

(
− 2
u2b
− u2a2

1 + u2d

)
du.

Denoting the two integrands g(η) and g∗(u), we see in Fig-
ure 4 that the behavior of g∗(u) is more regular than the be-
havior of g(η). The modified integrand g∗(u) is integrated
numerically over two grids. A lower grid with fixed resolu-
tion captures the behavior of g∗(u) around its peak, which is
given by a cubic equation. An upper grid with exponentially
decreasing resolution captures its asymptotic behavior. Ex-
act formulas for the grids are given in [7], but will be left out
here for the sake of brevity.

Using the substitution (27) in (20) we express the K-
Swerling I detection probability as

PD =
2(2/b)ν

Γ(ν)

∫ ∞
0

1
u2ν+1

exp
(
− 2
u2b
− u2T 2

K

2(1 + u2d)

)
du.

This modified integrand has a behavior similar to g∗(u), and
the same technique with two sampling grids can be used.

The substitution (27) also makes the integral in (25) more
well-behaved:

l(a|d, η̂) =
PFA

PD
· Γ(M)[
η̂M + a2

2

]M
·
∫ ∞

0

u2M−1

1 + u2d
exp

(
−u2

[
η̂M +

a2

2(1 + u2d)

])
du.

For this integral the grid is constructed by placing 100 sam-
ple points uniformly on the interval u ∈ [0,

√
1/η̂].
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Figure 4: Example integrands of the K-Swerling I likelihood plotted as functions of the texture variable η and u = 1/
√
η.

The amplitude is a = 5 and the expected SNR is 15dB for all three cases. The scale parameter b is 1/ν in order to keep the
second moment of the background equal to one.
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